Monday, March 27, 2017

Best Practices for Growing Vegetables in Used Vehicle Tires

René Pierre (right, red cap) from Demòn, in the mountains of Bayonnais, Gonaïves is leaning on a vegetable tire bench that he re-built and re-planted after Hurricane Matthew knocked his tire garden down, along with important bits of his family's home.
Over the years, people have raised the concern with me that growing vegetables in old tires can lead to heavy metal contamination of the plants, and therefore would represent a health risk to the very people we are trying to help. I have struggled to get clear information about the risks, which has included an ongoing dialogue with several people related to Educational Concerns for Hunger Organization [ECHO].

So that you can skip the discussion of about the articles that I have read and tried to summarize, I am putting right here at the beginning what I consider to be the best practices for growing vegetables in used tires.


Best Practices for Growing Vegetables in Used Vehicle Tires


1) Choose healthy soil to start with. Unfortunately, there are many sources of heavy metals that can create hazards much more rapidly than the tires you are using. Soils in urban zones may be particularly suspect. One huge advantage that I have found with vegetable tires is that I can start out with a mediocre soil and create my own soil using compost, mulch and redworms directly in the tire system. Sandy soils are the least likely to retain most contaminants. Mixing sandy soils with manure and then building the soil up over time with organic material may be one option that reduces external contamination. 

2) Choose tires that can be turned inside out so that the soil medium is exposed to the tread. Turning the tire inside out assures that water will flow through the soil, rather than puddling at the bottom of the soil profile, full of potential leachates. I know this is hard for many people to understand without seeing it. Check out the videos on YouTube.The link is below.

In addition, the tread is the part of the tire that has been studied the most, so any additional information that comes out will probably be most applicable.

To test a tire, lean lightly on the top of a tire standing straight up. If it bulges in easily, it should turn inside out easily.

3) Avoid tires that are retreads, or that have any kind of significant damage to the tread or the sidewalls. If the rubber has worn in any part of the tread to the point that wires are sticking out, do NOT use the tire for growing vegetables. This is especially important for tires made in China. In the Nepal study, the brand tested from China had much higher lead concentrations. Why that would be is not clear. Most companies do not use lead as part of the tire.

The importance of avoiding direct contact between soil and the wire structure of the tire is that the zinc used in tires is primarily found in these wires. Cadmium and chromium may also be concentrated in the wires.

4) If possible, choose tires that are less than 10 years old. Tires in the States have the date they were manufactured printed on them...in very small print. Good luck with that part.

5) Wash the tire before using it to get any accumulated hydrocarbons and carbon black out and off the treads. A couple of good rains should also do the job, once the tire is prepared and turned inside out so that the water flows through the tire and does not puddle.

6) Use a soil mix high in organic matter. This is obviously best for the health of the plant. Also, the organic carbon will bind readily with any offensive metals. If you have the means to measure the pH, make sure it hovers between 6.0 and 6.5. This is best for most vegetables and it seems to avoid the extremes that could promote either the leaching of heavy metals or the activation of the hydrocarbons. High organic matter will tend to keep the pH within this range.

7) Include biochar in your soil mix. We have seen that biochar helps increase vegetable production AND it also helps bind any offensive metals. Biochar also helps create a sponge texture in the soil mix which will keep your moisture supply more consistent and your roots happier and healthier. For more explanations on biochar, with links, you can check out my post (Biochar!)

8) Use 4-6" of mulch around the plants. It conserves moisture, reduces soil temperature and provides a slow and steady supply of nutrients. I mix our kitchen waste with sawdust from a local furniture maker and periodically apply this half to three-quarters rotted mix as a thick mulch to the tires. In my experience, this helps maintain and even increase the organic matter in the soil over time, resulting in healthier and more productive vegetables and flowers.

9) If you have the resources, paint the tires on the outside. It adds to the aesthetics and is a fun part of making a tire garden with young people. It will also help protect the outer part of the tire from degradation from the sun. It will also reduce temperatures for the layer of soil just inside the tire wall.

10)  Plant anything you want in the tires. Ben Fisher notes in the ECHO article that root crops are most likely to pick up heavy metals, fruits such as tomatoes or peppers are the least likely and leaf-producing crops are intermediate. On the other hand, I found an article, linked below, where researchers found that Red amaranth absorbs heavy metals in higher concentrations than either carrots or cabbage.

In terms of the zinc, here is the abstract of another study that looked at the sensitivity of four vegetables to zinc concentration: [Zinc Sensitivity]. Let me know in the comments if you find out more.

Despite all of these factors, what I have found in the literature indicates that the exposure to heavy metals leaching out of the tire material is of very minimal concern, regardless of the type of plant you are growing in your tires. I have found that for me and for many families, there are two types of plants that are very useful and which can do very well in tires:

a) Many types of herbs do well. Garlic chives, hot peppers, green peppers, parsley, oregano, basil, rosemary all do very well in many kinds of container gardens. They do very very well in tires with well-cared for soil. If you are living where there is limited space, such as an urban setting, then tires may be too big. Cans and buckets also work well.

In rural or suburban-type settings, tires are great because most homes have space where they can locate them so that the plants get enough sun AND where it is very convenient for the cooks to slip out of the kitchen and quickly cut fresh herbs whenever they need them.

In Haiti, it is the women we work with who are most likely to keep the yard gardens going. When they talk about the advantages of yard gardens and the vegetable tires, they almost always mention the 5, 10 or 15 Haitan gourdes they save, every day, because they produce their own herbs.

b) Several leafy greens do very well in tires. In terms of the tropics and with our experiences in Haiti specifically, these include amaranth, Malabar spinach and Okinawa spinach. Our experience with garlic chives is that they can be used in sufficient quantities that they might also be considered as a leafy green.

Malabar spinach growing in vegetable tires. Batey 7, Dominican Republic. 2014.

Here is a link to YouTube videos that demonstrate how to get started with a vegetable tire garden: How to start a tire garden--MPP, Haiti

And NOW for the discussion addressing the question:

Does using old tires for producing vegetable represent the risk of contamination by heavy metals?

In January 2016, ECHO published an article in their ECHO Development Notes titled "Tire Contaminants from a Container Gardening Perspective" which reviewed a number of articles, particularly one from the United Kingdom and one from Nepal. The one from the UK, "Environmental Health Implications of Heavy Metal Pollution from Car Tires" by J.M. Horner (1996) cannot be downloaded online but the abstract can be found at [Environmental Health Implications of Heavy Metal Pollution from Car Tires"]  and a request can be made for the full article.

The article from Nepal, "Studies and Determination of Heavy Metals in Waste Tyres and Their Impacts on the Environment" by P.R. Shakya et al (2006) is downloadable from the following link [Nepal Tire Contaminants Study]

You can download the ECHO article directly from a Google search using the title, "Tire Contaminants from a Container Gardening Perspective." Look for the [PDF] initials right before the title. Other avenues for the article require you to be a member of the ECHO Community (which is free and an excellent thing to be).

I have a whole lot of other downloaded articles related to contamination, some of which I have worked through somewhat thoroughly, others that I just read the abstract. There is a study from the 1990's commissioned by the Ontario government that tested the effects of tires soaking in fresh water. The researchers generally found very little toxicity to trout fingerlings [Ontario study of Aquatic Environments]. I found another study today that also had a focus on the aquatic effect of tires, but with a more negative result, "Rubber Tire Leachates in the Aquatic Environment" by Joyce. J. Evans in Reviews of Environmental Contamination and Toxicology. The following site will sell you the chapter for $29 and the whole book for $99. You can look at the first couple of pages for free: [Rubber Tire Leachates in the Aquatic Environment]. The difference between the two seems to be that the Ontario study looked at the effect of whole tires on aquatic environments in which the whole tires are submersed. The second study looks at what happens when the rubber is ground up and water leaches through the concentrated, ground up tire and then flows into the local aquatic system.

The two most recent studies that I have looked at a little more thoroughly both come from Sweden. "Metal Emissions from Brake Linings and Tires: Case Studies of Stockholm, Sweden 1995/1998 and 2005" by David S.T. Hjortenkrans (2007). You can download it at [Swedish Article]. The title looks complicated but the basic information about concentrations is simple and clear and found on page 5227, 2nd paragraph under the tables.  I just found the 2nd Swedish article today. The title is great, "When the Rubber Meets the Road: Ecotoxicological Hazard and Risk Assessment of Tire Wear Particles" by Anna Wik (2008) [When the Rubber Meets the Road].

If I told you I had read all of these articles, even just the ones I have downloaded and  printed out, from front to back, I hope you would not believe me. If I told you that I have understood at least three-quarters of what I have read, you might believe me, but I would still be lying. I guess I've gotten maybe half of it all at best. This is NOT my area of expertise. Chemistry, and especially Biological Chemistry is fundamental to understanding soils and growing plants. I think I am solid enough when it comes to understanding pH, Cation Exchange Capacity and at least the basics of the whole Nitrogen:Carbon relationship. But tires are complex. They are not just natural rubber. In fact, the excerpt from the Rubber Tire Leachates study includes the observation that tires today are mostly made of synthetic substances rather than from natural rubber. The Swedish Doctoral Thesis ("When the Rubber Meets the Road"), lists the following materials for the tire tread: synthetic and natural rubbers (40-60%), Carbon black and silica (20-35%), Mineral oils (15-20%), Sulphur (1%), Zinc oxide (1.5%). There is something like 2% of three or four other types of substances as well.

Here's what I think I do understand.

None of these articles are actually looking at the way we use tires.

In the ECHO arcticle, Ben Fisher and other ECHO staff members had to struggle with the same thing. They had to extrapolate from the information provided, applying it to the vegetable tire scenario as best they could, without knowing exactly how everything fits within a very different context.

The article from the UK used fragments of tire leached with solutions with a pH of 2.5.  That study was simulating the conditions of a pile of waste tires exposed to acid rain.

The Nepal study actually burned the tire samples and measured the heavy metals in the ash. That simulated very well what happens in Nepal where many families use cut up tires as a fuel source for warmth.

"When the Rubber Meets the Road" looked at the bits that come off the tires and contaminate the environment. Like the Nepal study, they measured the total concentration of heavy metals in the tire treads. I like the fact that they look at the treads, but we are not rolling our tires on the ground to grow vegetables.

The Ontario study was similar to using tires for vegetables in the sense that they looked at the impact from the whole, un-fragmented tire. It was also similar in the sense that they looked at the direct impact of potential leachates from water flowing over the intact tires on living beings--trout fingerlings instead of spinach, carrots, peppers and tomatoes. This study models our situation more closely than the others because it measures real time, direct impact on living things, while the others destroy the tires in ways that do not in any way represent how we use the tires.

Perhaps most convincingly for me, the absolute amounts of heavy metals potentially in the tires is actually very very low.

HEAVY METALS

I understand that there are four heavy metals that are of concern which have been found in tires. They are lead, cadmium, chromium and zinc.

The following examples are given in grams. A gram is smallish unit of mass, so obviously fractions of grams are even less. There are about 450 grams in one pound. There are about 28 g in one ounce. Medicines are almost always measure in milligrams, which is 1/1000th of a gram. PPM  stands for "parts per million." What that means is that 1 ppm is  1/1,000,000 (one one-millionth) of a gram of heavy metal for each gram of tire material.

LEAD

In all of the studies, the lead that was found in the tires did not come from the manufacturing. It accumulates on the tires as the roll along the road, picking it up from other sources. Brake linings, for example, have a significant amount of lead.

The UK study found concentrations of between 8.1 and 22.33 ppm (parts per million) lead in the liquid leached from the tire fragments.

On average, a truck tire weighs about 40 pounds, or about 18 kg. Using the higher concentration, this gives a total of  0.40 g potential lead that would be leached out of a whole tire.

The Swedish study actually found less lead in their tires. They got a concentration of 1.1 ppm, the equivalent of a total of 0.0198 g in the whole pickup tire. Again, the Swedish study focused on the tire tread because they wanted to know what was coming off the tire and dispersing as a contaminant into the environment.

Note: Because different studies examined different parts of the tire, I am assuming that the concentration of heavy metals remains constant for the whole tire in order to try and get a sense of the range of the heavy metals in a whole tire.


CADMIUM
The UK study found up to 3 ppm of cadmium, the equivalent of 0.054 g per large pickup-sized tire. The Swedish study found 1.1 ppm of cadmium, the equivalent of 0.040 gram in the whole tire.

CHROMIUM
The UK study did not look at chromium. In the Swedish study, they found 8.6 ppm in the tread, which extrapolates to 0.155 g per tire, if concentrations remain constant for the whole tire.

(Ben Fisher in the ECHO article notes that at  Redeemer University College they tested a tire sample and found 0.9 ppm cadmium, about the same as the Swedish study).

ZINC
Zinc is a nutrient for both plants and animals, but in excessive concentrations, it can cause damage to both. If the soil is highly contaminated with zinc, it will probably kill the plants. On the other hand, if humans cease to be exposed to or to consume excessive Zinc, the symptoms will generally disappear, according to the information presented by Ben Fisher in the ECHO article.

In the UK study, they found as much as 6012 ppm, the equivalent of  108.2 g in an entire truck tire. The Swedish study found as much as 12,000 ppm, the equivalent of 206 g in the whole tire.

DISCUSSION

When we create vegetable tire gardens in the Yard Garden program, or in my home yard, for example, we are not shredding the tires, we are not completely submerging them in water and we are not exposing them to highly acidic conditions. We do cut off one sidewall, but the soil is not exposed in any way to that area that we slice. We also turn the tires inside out, so the soil is exposed to the tire tread. In this sense, the numbers from the Swedish study are the most applicable. On the other hand, once the tires are planted, the rubber in our tires is no longer "hitting the road" so we are not contaminating our soil with bits of tire that rub off from friction.

One of the article notes that biological action will continue to degrade the tire. Our goal is to create soils that are extremely biologically active, so this type of degradation will continue to occur inside along the tire tread, but it will occur without the aid of constant saturation with water, abrasion by wind, exposure to ultraviolet rays, or mechanical friction. The outside of the tire will continue to be exposed to sun and wind and that will result in certain levels of degradation but should not effect the soil inside the tire for many years.


So, given that these articles suggest that the TOTAL amount of lead, cadmium and chromium is less than one gram in the whole tire each, AND that those fractions of grams are not generally exposed to being released from the rubber, it seems highly probable that these heavy metals do not pose any serious health risk.

Zinc is present in much higher amounts but it may not pose any serious risk either because 1) the zinc is also bound up into the tread and while it can leach out as the tire degrades, the whole amount present in the tire will never enter into the root zone all at once; it seems reasonable to assume that it will in fact always leach out at very slow rates and 2) if for some reason the zinc concentrations do build up to lethal levels, the zinc may kill the plants rather than render them poisonous for consumption.

Here is one article that looks at absorption trends for some of the key heavy metals, including Zn: (Heavy Metal Contamination in Vegetables). The article compares heavy metal concentrations in the soils with heavy metal concentrations in the vegetables being grown in them. If I understand the math correctly, Zn has a coefficient of between 7.7 % (0.077) and 13.8% (0.138), depending on the vegetable. The researchers found that Red amaranth absorbed zinc (and also lead), at higher rates than other vegetables such as carrots, cabbage and tomatoes. I zeroed in on the red amaranth because amaranth is one of the crops Haitian families commonly grow when they use tires for production.

The coefficient of 0.138 for zinc means that for every 100.0 mg of zinc per Kg of soil (a concentration of 100.0 part per million), the red amaranth tended to absorb 13.8 mg per Kg of green plant mass. So, if you ate one Kg of the red amaranth in one day, you would absorb 13.8 mg of zinc.

Is that a dangerous amount? On the Mayo clinic site (Mayo Clinic: Zinc Supplements), zinc supplements of  between 5 and 10 mg per day are sometimes recommended for children between the ages of 0 (just born) and 3 years of age. Dosages for adults are around 15 mg per day. Red amaranth is good stuff in terms of its Vitamin A content, the protein, the iron and some other nutrients. But you do not need to eat a Kg a day to benefit from all of those. A normal serving would be more on the order of 100 g of red amaranth leaves.

By the way, the soils in the study mentioned above were heavily contaminated from a combination of re-using water from urban areas and from the use of agro-chemicals. The lead in these soils was very high. The soil that had the lowest concentration of lead had 21.29 mg of lead per Kg of soil (the equivalent of 21.29 parts per million). We have approximately 79 Kg of soil in our tires (65 cm radius, 20 cm depth, so approximately 0.066 m3) so we would have an estimated 1.694 g of lead if our soils were as contaminated as the least contaminated soil from the above study.

As noted above, my estimate for the total lead in a whole tire comes to 0.4 g of lead. Therefore there is not enough lead in any vehicle tire to come even remotely close to the concentrations of lead in the agricultural soils in the study, even if all of the lead from the tire suddenly leached into the soil.

The cocktail of other chemicals that make up a tire are still a potential concern.  One major problem with figuring out how much of a concern is the fact that tire ingredients are viewed as proprietary information the tire manufacturers do not make them readily available, or available at all.

A brief e-mail conversation that I had with the Dr. Edward Berkalaar at Redeemer University College suggested that some hydrocarbons in tires can be taken up by plant roots. On the other hand, a note in the ECHO article cited information demonstrating that potentially toxic hydrocarbons would be a high risk for contamination only at a high pH. Ben Fisher does not mention the cut-off pH that the article thought the hydrocarbons would become more active, but "high" in terms of pH would normally start at 8.0 and above.

The Ontario study that looked at the effects of submerged tires on fish fingerlings found essentially that the old tires soaking in  their water did not effect trout fingerlings in any measurable way.  However the researchers did find that new tires soaked in water could cause significant mortality. They were eventually able to narrow the element causing fish mortality as one of the hydrocarbons--one or more of the "mineral oils" mentioned above.


SUMMARY
Tires on the whole pose serious environmental risks. Disposal of them as trash where hundreds and even thousands are dumped in one relatively small area clearly is likely to cause a serious environmental disaster. Grinding the tires up and then exposing them to sun and rain understandably creates conditions  for significant heavy metal contamination as the small particles degrade even more, releasing toxic substances into the rain water that flows through them.

Based on the information currently available, using a tire intact for growing vegetables is not a risky way to use old tires.


PLEASE SHARE ANY IDEAS OR OBSERVATIONS. I have been breaking my brain over this contamination issue for a long time. Conversations with Martin Price at ECHO and others kept me fully in the game of creating tire gardens, not to mention the beautiful production I've seen again and again in other yards and in our own. But I feel like I have finally got things really clear. I think I have read Ben Fisher's EDN article at least a dozen times, but finally today, with all of the other information I've digested, I really feel like I have a handle on it all.

Tires are by far the best option for container gardening. They are cheap, durable and can be transported long distances on the backs of pack animals.

Here is a link to Youtube videos that demonstrate how to get started with a vegetable tire garden: How to start a tire garden--MPP, Haiti

Sack gardens are also an incredible idea, but that is another blog.

Jenny, Keila, Annika and my tire garden in Barahona. We had green peppers, tomatoes, Okinawa spinach, basil, garlic chives and eggplants, not to mention the flowers. May 2015.

Tuesday, March 21, 2017

Hurricane Matthew--How you can help the farmers of Haiti

"Hurricane Matthew destroyed their crops in the middle of the growing season. And they will need the most help NOW, as the new growing season begins."

 October 4th through the 6th, Hurricane Matthew hit Haiti head on.  
 It was the worst natural-human caused disaster that Haiti has suffered since the earthquake of January 12th, 2010. Hurricane Matthew's greatest impact was in Haiti's southwestern peninsula. Grand Anse, including the capital of Jeremie, was devastated. The report on the hurricane's impact on Haiti from  Wikipedia [Effects of Hurricane Matthew in Haiti ] suggests that virtually every tree in Grand Anse was knocked down. I avoided looking at many photos, but I did read a few accounts from folks on the ground who confirmed that that land looked like it had been bombed. Cindy Corell, one our colleagues in World Mission shared some of what she saw in her blog from November 2016 [Cindy Corell: November 2016]. All crops were lost and at least half of the farm animals. The departments of Sur and Nippe were also exceptionally hard hit, as was the northwestern peninsula. The first map below demarcates the wind levels suffered. The second gives actual rainfall. Links in the captions lead to the original sources.

From twenty years now of experience with tropical storms and hurricanes, I know that rainfall causes much more widespread damage than the wind in mountainous terrain such as Haiti and the Dominican Republic, although with winds of 145 mph in the southwest, the winds that smacked southwester Haiti certainly were the initial source of the utter devastation. After Hurricane Matthew had passed, however, rains continued to fall for three weeks throughout the country; they fell most heavily in the south and the northeast. In part due to the continued heavy rains, a new round of cholera has added to the misery [A Photographer's Journey Into Haiti’s Cholera Crisis].

Overview of track and wind forces


This image shows the amount of rainfall dropped by Hurricane Matthew over the life and track of the storm. IMERG real time data covering the period from Sept. 28 through Oct. 10, 2016 show rainfall from Hurricane Matthew before and after its interaction with a frontal boundary. Matthew caused extreme rainfall in North Carolina resulting in over 20 inches (508 mm) of rain. Credits: NASA/JAXA, Hal Pierce

The Haiti Mission Network of the Presbyterian Church (USA) is working to link people throughout the denomination engaged with Haiti. You can check out the Facebook page:

Haiti Mission Network-Presbyterian Church (USA)

If you want to check out the posts most pertinent to the situation with Hurricane Matthew, you will need to select (upper left hand corner) "2016", rather than "Recent." October and November have the most posts.

This past March 12th, 13th and 14th, we had a major Mission Network Get Together in Asheville, North Carolina. Buzz Durham from outside of Asheville coordinated  a host of volunteers to make it happen. His congregation, Grace Covenant Presbyterian Church was one of the main hosts. Our colleague Jo Ella Holman worked with Buzz, Cindy Corell, and me to think through some of the logistics. Cindy and I, together with Cindy's Haitian colleague from FONDAMA, Fabienn Jean participated in the event, which included between 35 and 40 people representing more than a dozen mission engagements. Our focus was how can we be effective and respectful partners of the work that Haitians are already doing.

Cindy Corell [Mission Connections] has some excellent posts on Facebook: Cindy Corell: Facebook

I had the pleasure of translating for Fabienne Jean as she described to the participants how FONDAMA is responding to the crisis in the south as well as other areas hit by the subsequent flooding.

I visited FONDAMA's office in December during a quick family trip and saw the initial stockpile of vegetable seeds that they had purchased to send out to the farmer organizations working in departments of Haiti most affected by Matthew.  Most of these seeds were sent to Grand Anse, Nippe, Sur and L'Ouest, as well as the Nordest. They had cabbage, lettuce, tropical spinach (amaranth), okra and black-eyed peas, all crops that can be ready to eat and to sell in less than three months. The spinach can be ready for the table in 30 days or less from the planting date.
Farmers in Haiti are durable people. Knock their house down, they will find a way to put it back up. But Hurricane Matthew destroyed their crops in the middle of the growing season. And they will need the most help NOW, as the new growing season begins. As many of you know, FONDAMA is a network of grassroots farmer organizations led by people who understand their constituency--because they are farmers themselves.

Their focus in December were vegetable seeds--fast growing food. Now, Fabienne explained, they are working with Presbyterian Disaster Assistance to provide seeds for staple crops--beans, corn, pigeon pea. Along with the seeds they will train trainers in agroecological techniques that can help farmers recuperate their land, even as they grow the food that will sustain their families. The trainers, Fabienne explained, come from throughout the remote rural areas of the mountainous Southwest. They live near the people with whom they will be working. In each community they will also establish seed banks, where farmers will repay their seeds, plus interest. The goal is for these seed banks to serve as buffers, to create resilience, so that farmers have greater security when the time to plant comes.

Fabienne explained that the work also include providing simple systems for treating water, the main source of cholera infections.

If they can find the funds, the leaders of FONDAMA hope to include a second stage to this program, helping families recover their farm animals, especially the goats and pigs.

Thank you to all of you who have already donated through PDA and other funding sites. Thank you also for your prayers and your concern. If you or your congregation feel called to donate now, PDA is still a great way to go.

Funds can be sent to PDA, (https://pma.pcusa.org/donate/make-a-gift/gift-info/DR000193/) which is working hand in hand with Fondama Haiti to help provide seeds and tools to the mountain farmers of Haiti.

 It is unfortunate that my first Haiti blog after so long is about a disaster. But it was probably the burning need to do something that brought me back here again, finally.

In my next blog, I want to share stories from the communities where Herve Delisma and I worked from April 2012 through April 2016 with yard gardens. MPP (Farmer Movement of Papaye) was able to send Herve and a small team to each of the three farmer organizations to visit with people who were also hit by the hurricane. The winds, even though much less, tore off a lot of roofs and destroyed homes throughout the mountains of Léogâne, Verettes and Bayonnais. Crops were lost as were the farm animals. Many of the yard gardens, however, survived.

But that is the next story!

P.S. The mission of FONDAMA and all of the Joining Hands organizations throughout the world is to address root causes of hunger. In Haiti, in addition to responding compassionately to the situation in the south, FONDAMA is gearing up to confront large corporations and the Haitian government itself as these entities move to grab land from small holder farmers for the creations of industrial parks, mega-plantations of bananas and other export crops, or for mining gold and other minerals.

Search This Blog